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ABSTRACT

Using a set of data obtained from LIDAR (standing for “light detection and
ranging”) measurements at 65°/N during February and March 1986 at Poker Flat
Research Range, Alaska, an investigation of the planetary and gravity waves in the
middle atmosphere has been made. The measurement period included a moderate
stratospherié warfning which reached its peak response on February 20/21 and the
beginning of a major stratospheric warming which started on March 6. The long
period variations of the density of the middle atmosphere were modeled by a one-
dimensional planetary wave model. The modeled periods of the two principal wave
components agree well with the planetary wave numbers 1 and 2. The peak of
the density perturbation appears to be due to the sum effects of the constructive
interference of the waves. The short period variations of the density were analyzed
by spatial spectral estimation. The wave activity at 25-45 km and 45-65 km showed
that the level of significant wave breaking had been lowered to below 50 km during

the stratospheric warming period.
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Chapter 1
INTRODUCTION

The structure profiles in the middle atmosphere are known to be frequently
and considerably disturbed in the northern winter (Philbrick et al. 1985). LIDAR
sounding from the ground offers the new possibility of studying the characteristics
of wave propagation in the profiles of density and temperature for examining the

consequences of the dynamical processes in the middle atmosphere.

From February 14 to March 9, 1986, the density perturbations in the high
latitude middle atmosphere were measured continuously by LIDAR (standing for
“light detection and ranging”) at the Poker Flat Research Range near Fairbanks,
Alaska (Philbrick et al. 1987a and 1987b).

The full night mean density profiles are shown in Figure 1 and mean tem-
perature profiles are shown in Figure 2. Clearly, there was a large perturbation
of density at the altitude of 40 — 50 km which reaches a maximum on February
21. This perturbation corresponds to a period of moderate stratospheric warming
and appears to correlate with the constructive interference, or the superposition of
planetary waves. It corresponds, as well, to a period of extreme wave activity in
the stratosphere and cessation of gravity wave activity in the mesosphere.

Naujokat and Labitzke (1986) have reported the stratospheric warming about
the same time and latitude but based on the satellite data. The dynamical behavior
of the middle atmosphere during a stratospheric warming has been studied by var-
ious authors, for instance, Offermann et al. (1987), McIntyre and Palmer (1983),
Haynes and McIntyre (1986), Holton (1982), Salby (1984), etc. In this thesis, em-

phases are placed on the characteristics of the planetary waves and gravity waves
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during a stratospheric warming. Chapter 2 presents a brief description of the back-
ground in planetary waves. Chapter 3 is devoted to a description of the metlhods
of signal processing involved in the analysis. In Chapter 4, a model of planetary
waves has been developed to demonstrate the characteristics of the principle plan-
etary wave components. In order to reduce the number of the parameters to be
determined in the model, different power spectral estimators were tried in an effort
to pick the major frequency components. Then a monotonic spatial power spectral
estimation was applied to the density signals with short periods, which are normally
associated with the gravity waves. The spatial spectral estimation was carried out
at different altitude ranges. The results show that, in the stratosphere, there was
strong short period wave activity during the stratospheric warming periods, while
in the mesosphere, the wave activity was much weaker when compared to the usual

case.



Chapter 2
PLANETARY WAVE BACKGROUND

The very large scale wave features which are observed in the flow on the plan-
etary scales are known as planetary waves. Those waves that owe their existence
to the variation of the Coriolis force with latitude are known as Rossby waves. The
characteristics of those waves during the stratospheric warming periods in 1986
have been investigated based on the measurements of a LIDAR. To provide a back-
ground of this aspect, a review of the derivation of equation of motion, equation of
continuity and equations of planetary waves is presented in this chapter (Houghton

1986, pp. 88-113; Holton 1979, pp. 27-44 and pp. 147-167).

2.1 The Equation of Motion

By Newton’s second law of motion (M@ = }_; ﬁ), the equation of motion for
an element of fluid of density p moving with velocity ¥ in the presence of a pressure

gradient Vp and a gravitational field g7 is

-

Vp+ F, (2.1)

&g
© -

whe;'e F is the frictional force on the element. Note that, for a motion with a
scale large enough as compared to the radius of the earth, equation (2.1) applies to
an inertial frame of reference, i.e., fixed with respect to the solar system. We are
interested, however, only in the motion of the element that is relative to axes fixed
with respect to the earth’s surface, not that of the sun. Hence the angular velocity

£ of the earth has to be taken into account in equation (2.1).
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Denoting ‘e’ the frame that is rotating at angular velocity { with respect to
the sun and s’ the frame that is fixed to the sun. The velocities of the element in

those two frames have the following relation
dr dr ~
— e — r 2.
<dt>e (dt) +Qxr, (2.2q)
[
where 7 is a radius vector, or
Ty =V + 0 XF, (2.2b)

where v, is the velocity of the element in frame s while v, the velocity in frame e.

Likewise, the relation of the accelerations in the two frames is

47, ANE
- axi
(dt)s (dt>e+ X Ve

_ (d(ie—i-ﬁxr“)

o ) +0Ox (@ +Qx7)
€

-

dv,

dt

+20 X 7+ QX 7. (2.3)

Substituting equation (2.3) in equation (2.1), yields

S

- 1 -
=20x(0—-Vp+g§+F, (2.4)
p

where 7 = 7, and § = @' — € X (2 X ) is the acceleration due to the gravity and the
centrifugal term £ x (ﬁ X 7). The first term on the right-hand side is the so-called
Coriolis force which applies particularly to the moving element in rotating frames.

To obtain the component equations in cartesian coordinates, assuming a set of
axes at any point on the earth’s surface (see Figure 3) having x directed towards

the east, y west and z vertically upwards, the velocity vector is written

v

u+ ju+ kw ‘ (2.5)



x x+dx

Fig. 4. The elementary volume
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where u,v and w are the components of the velocity ¢ in the z,y,z directions
respectively and ;;;, k are unit vectors directed along each axes, as shown in Figure
3.

Obviously, the directions of the axes (i.e., the unit vectors Z; and E)in Figure
3 are changing with position. In other words, those unit vectors are functions of x,

y and z. The total derivative therefore of ¢ in equation (2.5) is

éz_?_ -»du+-du+]zdu n £+ df_}_ (_iE
gt \Ydt Ta T e Ya s Ve |

_ _ uvtang uww)\ -
- a e )’
( 2tanqS vw) -
+ =+ +—7
a
u?
+ ( T ) k, (2.6)

where a is the radius of the earth and ¢ is the latitude. Since & has no compo-
nent parallel to ; and its components parallel to _; and k are Qcos¢ and Nsing,

respectively, the vector cross product

— — -

T 7 k
2Qxv=20(0 cos¢p sing
u v w
= (20wcos¢ — 2Qvsing)i + 2Qusing] — 2Qucosdk. (2.7)

The pressure gradient force can be expressed as

-0p -=0p ~_6_p

Vp—-zg— +]6y +ho (2.8)
The gravity can‘be represented as
§=—gk, (2.9)
and friction can be expanded as
F =1F, +jF, + kF.,. (2.10)

8



Substituting (2.6)-(2.10) in (2.4) and equating all terms in the 7,; and k di-

rections, respectively, we obtain the eastward, northward and vertically upward

component equations,

uvtangd uw 10p

—_—f — = ——— + 2Qvsing — 20wcos¢ + F,, (2.11)
a a p Oz

dv u’tand vw 10p .

= + - + — = _;8_y — 2Q0using + Fy, (2.12)

dw u?+0? 1dp
— T e —— — re .13
7 " Py + 2Qucos¢ + F (2.13)

The magnitudes of the various terms in the above equations will be very differ-

ent, depending on the scale of the motion under study. Here we shall be concerned

with motions on what is generally known as the synoptic scale, that is, systems

of typically 1000 km in horizontal dimension, very much larger than their vertical

scale (of order 1 scale height or ~ 10 km). For this scale observed vertical velocities

(typically 1 cm s™!) are very much smaller than than horizontal velocities (typically

10 m s7'), so that in equation (2.11)-(2.13) terms involving w can be neglected.

Again, because those terms in the equation involving @ in the denominator are

smaller by about one order of magnitude than the other terms and may therefore

be neglected, the momentum equations (2.11)- (2.13) thus may be simplified as

du 180p )
T + ;a = 20using
dv 19p .
=422 — 920
= + 3y ustng
dw 10p
> L 2% L 9 1
i e +g ucoso, (2.14)

where friction force F is neglected.



2.2 The Equation of Continuity

The equation of continuity states that the net flow of mass into unit volume
per unit time is equal to the local rate of change of density.

In the elementary volume (Figure 4) where the density is p and u, v and w
are the velocity components along Cartesian axes, the mass entering the volume
per unit time at z over the face of area dydz is pdydz, and leaving.at z + dz is
(pu + ig’—:—ld:r:)dydz. Thus the net rate of flow into the volume due to the z velocity

component is —%dedydz. Adding z,y and 2z components together, we have

d(pu) N d(pv) N d(pw) _ dp

= ——. 2.15
oz oy 0z) ot (2.15)
For an incompressible fluid the above equation reduces to
du OJv OJw
— 4+ — +—=— =0 2.16
or * dy * 0z 0 ( )

It was shown through scale analysis that for purely horizontal flow the atmosphere

behaves as though it were an incompressible fluid (Holton 1979. pp. 43-44).

2.3 The Equation of Two-Dimensional Planetary Waves

Assuming there is no vertical motion in an atmosphere, the equation of motion
(2.14) and the continuity equation (2.16) become

du 19
du  19p _
dt poz
dv 19
dv 18p _
dt pdy

Jdu Ov
% -+ -a—y = 0. (2.17)

10



where f = 2flsing. Operating on the first equation in (2.17) with 'aa_y and the
second with % and then subtracting

d [0v Ou ov Jdu of
= (== == =L =o. 2.18
dt <8:z: 8y)+f<8y+8:z:>+v8y ( )

The second term in (2.18) is zero by the third equation in (2.17). As a further
simplification, we may expand the Coriolis parameter f in a Taylor series about the
latitude ¢, as

f = fo+ By + (higher — order terms)
where y = 0 at ¢,, f, = 2Qlsing, and

d d
8= 49 = 29cosd>—¢- = 21} cos¢——1—-— = ZQCOSd)O
Cdyl,, dyly, 1-(2)2/, a

a

since sing = L. Note that

and assume a linear relation between f and y, i.e. we let f = f, + By, equation

_§_+__a_ o _ 9w +B8v' =0 (2.19)
at " oz 9z Jy vE=r ’

If we define a perturbation stream function ¢ according to

(2.18) becomes

_ 8,8

v = 8’ vza:z:’

the perturbation form (2.19) then is

o 8\ wp, 00
(E +u5§> v ¢+ﬁ% = 0. (2.20)

Assuming a solution exists of the form

¥ = Re{Ael Withatly)y (2.21)

11



where k and ! are wave numbers in the zonal and meridional directions, respectively,

substituting from (2.21) into (2.20) gives
(w+ ka)(—k* - 1*) + kB = 0,

or
Bk
(k? +12)°

—w = ki —
Thus for wave solutions (2.21) to be possible the dispersion relation

w B

C=——— =1 —

k (k2 + 12)

(2.22)

(2.23)

must be satisfied. The velocity relative to the zonal flow is ¢ — @ where ¢ is the phase

velocity towards. Rossby waves (planetary waves in their simplest form), therefore,

drift to the west relative to the mean flow.

12



Chapter 3
SIGNAL PROCESSING BACKGROUND

Digital signal processing has a broad spectrum of topics. In this chapter, the
emphasis is placed only on spectral estimation (Lim & Oppenheim 1988, p. 58-118)
and modeling of data (Press et al. 1989, p. 521 -528) since, in the following chapter,
an effort has been made to investigate power spectra of waves with different periods
and to model the perturbation of the atmosphere density by the superposition of

several sinusoids.

3.1 Spectral Estimation

In digital signal processing, the required spectral estimation is to be generated
from a finite set of time series observations. Spectral estimators may be classi-
fied as either nonparametric or parametric. Periodogram and Blackman-Tukey are
nonparametric estimators while Maximum entropy is a parametric estimator. The
nonparametric estimators require no assumptions about the data other than wide-
sense stationarity. However, they have the disadvantage that, if the estimator yields
good estimates on the average (low bias), then we can expect much variability from
one data realization to the next (high variance); if we choose an estimator with low
variability, then on the average the spectral estimate may be poor. The only way
out of this dilemma is to increase the data record length. The parametric ones, on
the other hand, are based on rational transfer function or time series models of the
data. Hence, their application is more restrictive. The advantage of the parametric

spectral estimator is that when applicable it yields a more accurate spectral esti-

13



mate. Without having to increase the data record length, we can simultaneously
reduce the bias and the variance over the nonparametric estimator. Of course,
the improvement is due to the use of a prior: knowledge afforded by the modeling

assumption.

3.1.1 Periodogram and Blackman-Tukey Spectral Estimators

Assuming z(n) is a real discrete-time random process that is wide sense sta-

tionary, the power spectral density (PSD) of z(n) is defined as

j. -

M
1 .
= lim E|——m —jwn
P (w) li l:z 1 ’nzg—_ z(n)e

Equation (3.1) says that the PSD at frequency w is found by first taking the magni-
tude squared of the Fourier transform of z(n) and then dividing by the data record
length to yield power. Since the power will be a random variable, the expected
value is taken.

Corresponding to (3.1), the periodogram spectral estimator is defined as

. 1 N-1 ) 2
Pepa(w) = | Y a(n)e " (32
n=0

It might be supposed that if enough data were available, say N — oo, then
ppER(w) g P:(w).

This is the case for estimation of the mean. However, the random fluctuation or
variance of the periodogram does not decrease with increasing N and hence the
periodogram is not a consistent estimator.

Another estimator called Blackman-Tukey is thus developed in the hope that

a better estimation can be obtained. The following expression of PSD is considered

14



to be equivalent to (3.1):

Pow) = ) ra(k)e i, (3.3)
k=—o00
where
rz(k) = E[z(n)z(n + k)] | (3.4).

the so called periodogram estimator could be expressed as

n—1
PPER(W) = Z Fre vk (3.5)
k=—(n-1)
where
1 N—1—|k|
Fa(k) = = > z(n)z(n + |k|) (3.6).
n=0

Here 7,(k) is a biased estimator of the autocorrelation function. The poor perfor-
mance of the periodogram, that it is not a consistent estimator since the variance
does not decrease with increasing data record length, may be attributed to the poor
performance of the autocorrelation function estimator. In fact, from equation (3.6),
(N — 1) is estimated by -z(0)z(N — 1) no matter how large N is. This estimator
will be highly variable because of the lack of averaging of lag products, and it will
be biased as well. The higher lags of the autocorrelation function will be poorer
estimates since they involve fewer lag products.

One way to avoid this problem is to weight the higher lags less, which gives

rise to Blackman-Tukey spectral estimator

Ppr(w) = i w(k)f,(k)e 7“k, (3.7)
k=—(N-1)

where w(k) is a weight function, called the lag window. If the Bartlett window is

selected, then

1B k| <M
k = M’ - . 3_
w(k) {0, if k| > M (3.8)

15



The Blackman-Tukey estimator (3.7) has the advantage that the variance can be
suppressed. However, this is obtained at the cost of increased bias in the mean.
Much of the art in nonparametric spectral estimation, therefore, is in choosing an

appropriate window, both in type and in length.

3.1.2 Maximum Entropy Estimator

Maximum entropy spectral estimation is based on an explicit extrapolation
of a segment of a known autocorrelation function for the samples that are not
known. Suppose {r(O),r(l), ..»7(p)} is known, then the question arises as to how
{r(p + 1),7(p + 2),...} should be specified in order to guarantee that the entire
autocorrelation function is valid or that its Fourier transform is nonnegative. In
general, there are an infinite number of possible extrapolations, all of which yield
valid autocorrelation functions. In the maximum entropy method, it is argued
that the time series characterized by the extrapolated autocorrelation function has
maximum entropy. The time series will then be the most random one.

The word entropy arises from the measurement of information. Assume that p
is the probability of occurrence of a message and I is the information gained from the
message. We know that a message that is certain to happen (having a probability of
unity) conveys no information while a message that is almost impossible to happen
(having a probability of zero) conveys a large amount of information. Hence when

p— 1,1 — 0 and when p — 0,I — 1. This suggests the following
1
I ~log—
P.

Suppose that we have a communication system which transmits M different mes-

sages {m,,ms,...}, with probabilities of occurence denoted by {pi1,p2,...}, respec-

16



tively. Suppose further that during a long period of transmission, a sequence of L
messages has been generated. If L is large, then, on the average, we may expect to
find in the sequence p; L messages of m, po L messages of m2 and so on. The total

information in such a sequence is given by (Lathi 1983, p. 608-612)

1 1
Itotal = (p1L)loga (—> + (p2L)log2 <—> + ...
P P2

The average information per message interval, represented by the symbol H, is

therefore

Ttotal o= 1
H==22% - l — .
T Zpk092(pk)

k=1

The quantity H is the entropy.
If we consider a time series {z(n)} that is Gaussian distributed and limited to
the frequency band —fg < f, < fB, then the entropy per sample at the Nyquist

rate has the form (Haykin 1979, p. 16-70)

L

E« /_2 In P(f)df, (3.9)

2

where f = f,/fs in which f, is the sampling frequency and P(f) is the PSD of the
process z(n). From (3.3), the PSD of z(n) is

P(f) = i r(k)e~i27 Tk, (3.10)

The autocorrelation function is obtained by taking the inverse Fourier transforma-

tion, i.e.
1

r(k) = /_3 P(f)e2" Pk g, (3.11)

1
2
Our interest here is to find the spectral density estimate P(f) provided

{r(0),7(1),...,7(p)} is known and {r(p+1),r(p+2),...} has maximum entropy. We

17



therefore differentiate the entropy E in (3.9) with respect to r(n), where |n| > p,

and set the result to be zero to get

/ d1ln P(f)df _ /% 1 0P(f)
_1 Or(n) —1 P(f) or(n)

Using (3.10) and noting that n is arbitrary but fixed, equation (3.12) becomes

df =0, |n|>p. (3.12)

(M1

13 .
/ 3 () df / _72"f"df =0, |n|>p. (3.13)
_% ..~
Expanding _(f_) in Fourier series,
oo
. 1 1
—imfn < f< = 3.14
2 S</<3 (314)
where ¢, can be determined as
f% e_721rfndf ,nl < )
Cn = 2 (f) ’ - . (315)
=0, In| > p

That ¢, =0 if |n| > p is obtained by taking the complex conjugate of the left-hand

side of (3.13). From (3.14), the estimate of PSD may be expressed as

1

P(f) = ’};z_p Cne_]'zrfn (3.16)
Equation (3.16) is equivalent to the following form (Haykin 1979, p. 18-20)
2
o
P() = (3.17)

|1+ ke alk)es2m sk,

Equation (3.17) happens to take on an identical form to the autoregressive (AR)
model, which is another parametric spectral estimator. In other words, the principle
of maximum entropy and the representation of the process z(n) by an autoregres-
sive model are equivalent. The coefficients {a(1),a(2),...,a(p),0?} in (3.17) can be
found by solving the celebrated Yule-Walker equations using the known samples,

{r(0),7(1),...,7(p)}, of the autocorrelation functions (Bose 1985, p. 361-372).

18



3.2 Modeling of Data

An assumption is made that the long term density perturbations of the at-
mosphere can be modeled by the superposition of several sinusoids with specific
periods, namely

D(z,t) = RE{Z A,-ej(“"'t-kz)} = Re{Z(ci + j'di)e"(“"t'kz)}, (3.18)

1

where D is the density ratio of the atmosphere, z is the horizontal spatial coordinate,
t is time, A; = ¢; + jd; is the complex amplitude and & is the wave number in the z
direction. Taki}lg w; (frequency), (c? + d?)% (amplitude) and tan“l%‘_i (phase angle)
to be the parameters of the model, we now consider fitting when the model depends
nonlinearly on the set of M unknown parameters ax,k = 1,2,..., M, denoted by a.
For simplicity, z is fixed so that D is the function of ¢ and & only. The model to be

fitted becomes

D = D(t; 4). (3.19)

A merit function x is defined as

x(8) = Z:[E%?@——@J 2, (3.20)

where 4 is the parameter array and o; is the variance for each signal, and the best-fit
parameters will be determined by its minimization. If the current approximation
D(ti;d.ur) is a good one, we jump from the current trial parameters 4.4, to the

minimizing ones a,,in, namely
Amin = cur + ct. [-.Vx(acu-f)] s (3'21)

where C is the matrix whose components are the second partial derivatives of the

merit function. If D(t;;38.y,) is a poor one, we try to take a step down the gradient

19



Vx. Thus

Anezt = Acyr — constant - Vx(dcur), (3.22)

where the constant is small enough not to exhaust the downhill direction.

The gradient of x with respect to a has components

9x 5 ZN: |D; — D(t;;a)] 0D(z;a)

o2

3.23
o~ I , (3.29)

day

and the matrix C in (3.21) is obtained by taking the second partial derivative of x,

namely

BZD(ti;E)
darda; |’

- [D:i — D(ti; )]

8%y 2ZN:_1_[6D(ti;5) dD(t:;3) (3.24)

aakaal - 1 0? aak aaz

2 . e L3
aik gal can be ignored here because D; — D(t;;d) is

The second derivative term

small. Further more, if we let

1 dx
=2 3.25
Bk 2 das (3.25)
and
1 0%
== : 3.26
= 2 daroa (5.26)
by making [e] = 2C, (3.21) can be rewritten as the set of linear equations
M .
Z akiba; = B. (3.27)
=1
where 63 = 3.yr — amin. Likewise, (3.22) becomes
ba; = constant - (3. (3.28)

Since the model (3.18) depends nonlinearly on the parameter array a, the
minimization of x proceeds iteratively. Given trial values for the parameters, the

above procedure is repeated to improve the trial solution until x stops decreasing.
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Chapter 4
CHARACTERISTICS OF ATMOSPHERIC WAVES DURING
STRATOSPHERIC WARMING PERIODS

In this chapter, the characteristics of planetary waves and gravity waves during
the stratospheric warming that was observed in February-March 1986 are reported.
First, a one-dimensional planetary wave model was developed with the help of power
spectral estimation as well as nonlinear fitting. The agreement of the modeled
atmospheric densities and the measured ones showed that the density perturbation
in the atmosphere can be approximated by the superposition of only a few sinusoids.
Then a spatial power spectral estimation was applied to the signals with short
periods in the hope of revealing the characteristics of gravity waves during the
stratospheric warming. The result shows that the warming period corresponds to
a periodic enhancement of wave activity in the stratosphere and the weakening of
gravity wave activity in the mesosphere, which could be caused by the descending
of the level of significant wave breaking due to the constructive interference of the

planetary waves.

4.1 Characteristics of the Planetary Waves

To find the periods, phase shifts and the amplitudes of the planetary waves,
a one-dimensional model was developed to simulate the density variation between

February 15 and March 9, 1986. The model has the following form:

1

D(z,t) = Re{z Aiej(“"t_k’)} = Re{Z(ci —+ ]'d,')ej(“"'t_k’)}, (4.1)
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where D is the density ratio of the atmosphere, z is the horizontal spatial coordinate,
t is time, A; = ¢; + jd; is the complex amplitude and k is the wave number in z

direction.

Since the measurement was done at a fixed place, £ can be, without loss of
generality, set to be zero in the above model. Now that only the time development

of the waves needs to be simulated, the parameters to be estimated are as follows:

w; : frequency
(2 +d*)2 : amplitude ) (4.2)
d-
tan~!'— phase
C:

The frequencies of the planetary waves were determined by power spectral
estimation. In Chapter 3 we realized that the estimation of the power density
will be more reliable if the measured data record is sufficiently long. Unfortunately,
wthere were only 22 full-night mean densities available. To achieve a better spectral
estimation, both parametric and nonparametric estimators were used and the results

were compared.

For convenience, the densities had been converted to density ratios by using
the U. S. Standard Atmosphere 1976 as the basis. The mean of the densities at
each altitude (5 km steps, from 25 km to 65 km) had been subtracted so that the
expectation of the signals became zero. The power density spectral estimators, both
parametric and nonparametric, were then used to explore the power spectra at the

different altitudes.

Figure 5(a) shows the results from the Blackman-Tukey estimator. One can
see that even though the signal had zero mean, the DC components in the power

spectra were not zero. This is because once a Bartlett window (3.8) had been used,
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the autocorrelation lag estimate became

fall) = (1= 40) 7208 (43)

which represented a biased estimate. Likewise, this estimator tended to give some
low frequency components which were not present in the results of Maximum En-
tropy estimator (Figure 5(b)). Figure 6 shows the estimated power spectra at all
altitudes (from 25 km to 65 km, 5 km steps) by the Maximum Entropy method.
Since the purpose was to find that at which frequencies most of the signal power
resided, a high order (M = 15) estimator was used, which could pick the most
dominant frequencies. It is interesting to see that the power of the signal resided at
some particular frequéncies, such as f; = 0.07, f, = 0.10, f3 = 0.225 and f4 = 0.33.
Thus the frequencies w; in the model could be easily determined. The number of
the frequencies being selected also implies the number of sinusoids embedded in the
density signal.

A computer program was developed to perform the nonlinear fitting. With
frequencies being fixed, amplitudes and phases of the four waves were represented
by a parameter array a. A merit function was defined which depended on the known
density signal as well as the unknown parameter array a (see Chapter 3, equation
(3.20)). The arré& a was updated by the minimization of the merit function. Since
the model was dependent nonlinearly on the parameters, the minimization was
carried out iteratively after trial values were given.

The result of the simulation is shown in Figure 7. The comparison of the
modeled density perturbations and the measured ones is presented in Figure 8. The
satisfactory agreement in turn gives credibility to the Maximum Entropy method
used in the power spectral estimation.

From the model, the phase shifts of the principal wave components versus
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Since the amplitudes of gravity waves tend to grow exponentially while the
waves are propagating upward. Thus we expected to see greater magnitudes of
the power spectra at 45-65 km range than that at 25-45 km. However, Figure 10
shows the contrary during the stratospheric warming periods. The weakened gravity
wave activity at 45-65 km could be explained as the constructive interference of the
planetary waves modulating the stability of the surrounding atmosphere at about
50 km, so that the level of significant wave breaking was lowered to that altitude.

Such phenomena had been discussed by Lindzen (1981) and Fritts (1984).
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Chapter 5
CONCLUSIONS

Middle atmosphere densities measured by a Rayleigh scatter lidar during Febru-
ary and March 1986 showed strong wave-like perturbations. The high resolution
sequences of the continuous measurements provided a solid base for the simulation
of the long period variations as well as the investigation of the gravity wave activity.

The long-term perturbations of the density were modeled satisfactorily with
a superposition of several sinusoids. Periods of the sinusoids were found to be 14,
10, 4 and 3 days by spectral analysis at the fixed altitudes. If a horizontal velocity
of 10 m/s is assumed as typical of synoptic scales, the first two sinusoids with the
periods of 10 and 14 days correspond to planetary wave 1 and 2.

The spatial spectrum analysis of the gravity waves showed strong wave activity
at 25-45 km during stratospheric warming periods. The weakening of gravity wave
activity at 45-65 km during the warming periods implied that the level of signifi-
cant wave breaking was lowered to below 50 km during the event, which could be
explained as the constructive interference of the planetary waves hadlmodulated
the stability of the surrounding atmosphere.

While the source for the stratospheric warming must be from the large energy
source of the planetary waves, the mechanism for the event is not clear. It may be
that the constructive interference of the planetary waves results in such large density
perturbations that the stability of the stratosphere is upset. In fact, planetary wave
breaking could be thé physical process that leads to the large amount of small scale
wave structure observed near the peak of the event (the large vorticity increase).

The planetary wave breaking would generate a range of scales of shorter waves and
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vortices as the atmosphere re-establishes equilibrium. The observed temperature
increase, for which these events are named, méy be just the normal response of the
adiabatic heating of the higher density at about two scale heights above, due to the

constructive interference of the waves.
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Appendix
COMPUTER PROGRAMS

. FIT.FOR—Program to perform nonlinear fitting of data.

. MEM.FOR—Program to perform spectral estimation with Maximum Entropy
estimator.

. PICK5.FOR—Program to lift the data needed from profiles.

. GSP.FOR—Program to extract gravity wave signals from profiles.

. PDM.FOR—Program to perform spacial spectral estimation with Blackman-

Tukey estimator.
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o000 000000000

0o

o000

PROGRAM FIT

THIS PROGRAM IS USED TO FIT THE GIVEN DATA TO A NONLINEAR
MODEL, NAMELY, A SUPERPOSITION OF 4 SINUSOIDS. THE
FREQUENCIES OF THE SINUSOIDS HAVYE BEEN ALREADY DETERMINED BY
MAXIMUM ENTROPY METHOD. THE AMPLITUDES AND THE PHASES ARE TO
BE FITTED ITERATIVELY IN THIS PROGRAM.
INPUT OF THIS PROGRAM:
DA4.DAT. THIS IS A DATA FILE CONTAINING EQUAL SPACED DENSITIES
AT DIFFERENT ALTITUDES (5 KM STEPS, FROM 25 TO 65 KM) FROM
FEB.15 TO MAR.9,1986 (CERTAIN INTERPOLATION HAS BEEN DONE).
OUTPUT OF THIS PROGRAM:
1. AO.DAT,...,I0.DAT. THOSE ARE MODELED DENSITIES AT DIFFERENT
ALTITUDES (5 KM STEPS, 9 LEVELS).
2. SINUSOID.DAT. THIS IS A FORMATED FILE CONTAINING THE TABLE OF
THE AMPLITUDES, PHASES AND PERIODS OF THE SINUSOIDS.
3. ERROR.DAT. THIS IS THE FILE CONTAINING THE SQUARED ERROR
BETWEEN THE MODELED AND THE MEASURED DENSITIES.

DIMENSION X(39),Y(30),YDAT(36,38),SIG(38),A(20),LISTA(29),
COVAR (26,26) ,ALPHA(20,20) ,ERROR (15)

CHARACTER CHAR1*1,CHAR2*2,CHAR3*2

DATA X/1.,2.,3..4.,5.,6.,7.,8.,9.,16.,11.,12.,13, ,14.,15. ,16.,
17.,18.,19.,20.,21.,22. ,23. ,24. ,25. ,26. ,27. ,28. ,29. ,30./

DATA SIG/30*1./

DATA LISTA/1,3,4,6,7,9,18,12,12%8/

TRY TO MODEL THE DENSITY DISTRIBUTION BY THE SUM OF THREE

HARMONIC WAVES WITH PERIODS 16,12,18 AND 4 DAYS,RESPECTIVELY.

PRINT *,'ENTER THE TOTAL NUMBER OF PARAMETERS OF THE MODEL, MA.
NOTE THAT MA<=280.°
READ *, MA
PRINT*,'ENTER THE NUMBER OF THE PARAMETERS TO BE ADJUSTED,MFIT.
NOTE THAT MFIT<=MA.'

READ *, MFIT
MA=12
MFIT=8
NCA=MFIT
NDATA=22
LEVL=9
NW=4
TPI=6.2831852
OPEN(UNIT=3,TYPE='OLD' ,NAME='DA4")
DO I=1,LEVL

DO J=1,NDATA

READ(3,*) YDAT(I.J)

ENDDO
ENDDO
CLOSE (3)
OPEN (UNIT=6,TYPE='NEW' ,NAME=' SINUSOID" )
WRITE(6.*) 'SINOSOIDS AT DIFFERENT ALTITUDES:®
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aa

noaoaan

108

DO 15@ I=1,LEVL
DO J=1,NDATA
Y(J)=YDAT(I,J)

ENDDO
DO J=1,MA
A(J)=1.
ENDDO
PRINT *,'ENTER THE FREQUENCY FOR EACH OF THE 4 HARMONICS.'
A(2)=.07
A(5)=.10
A(8)=.225
A(11)=.325

PRINT *,'ARE THE PARAMETERS CORRECT ? ENTER Y/N.°
ACCEPT 5, CHAR2
FORMAT (A1)
IF (CHAR2.EQ.'N' .OR.CHAR2.EQ.'n') THEN
PRINT *,'ENTER THE PARAMETERS AGAIN.'
GOTO 100
ENDIF
ALAMDA=-1.
CHISQB=1.

CHISQ=0.
DO WHILE (CHISQ.LT.CHISQQ)
CALL MRQMIN(X,Y,SIG,NDATA,A MA,LISTA ,MFIT,
* COVAR ,ALPHA ,NCA ,CHISQ,CHISQ@ ,ALAMDA)

ENDDO
PRINT *,'ERROR=',CHISQ
PRINT *,'DO YOU WANT TO AJUST THE PARAMETERS OF THE HARMONIC
* WAVES ? ENTER Y/N'
ACCEPT 5,CHAR1
IF (CHAR1.EQ.'Y'.OR.CHAR1.EQ.'y') GOTO 108
ERROR (I)=CHISQ
J1=I+64
CHAR3=CHAR (J1)//'@"
OPEN(UNIT=4,TYPE='NEW' ,NAME=CHAR3)
DO Ii=1,NDATA
yi=0.
DO L=1,MA-1,3
Y1=Y14A(L)*SIN(TPI*A(L+1)*X(I1)+A(L+2))
ENDDO
WRITE(4,*) X(I1),Y1
ENDDO
CLOSE (4)
WRITE DOWN THE HARMONIC FUNCTIONS OBTAINED.
WRITE(6.*)
WRITE(6,8) 25+5*(I-1)
FORMAT(1H ,'ALTITUDE=',I3)
WRITE(6,*)
WRITE(6,10)
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10

20

150

11

12

13

FORMAT(1H ,'1ST SINOSOID, 2ND SINOSOID, 3RD SINOSOID,

1 4TH SINOSQID')

DO L=1,MA/NW
WRITE(6,28) A(L),A(L+3),A(L+6),A(L+9)
FORMAT (4F14. 10)
ENDDO
WRITE(6,*)
PRINT*,'THIS LEVEL IS DONE. ENTER PARAMETERS FOR NEXT LEVEL'
CONTINUE
OPEN (UNIT=4,TYPE='NEW' ,NAME='ERROR " )
DO I=1,LEVL
WRITE(4.*) I,ERROR(I)
ENDDO
CLOSE (4)
CLOSE (6)
STOP
END

SUBROUTINE MRQMIN(X,Y,SIG,NDATA,A,MA,LISTA MFIT,
COVAR ,ALPHA ,NCA,CHISQ,CHISQ®,ALAMDA)
SET TO LARGEST NUMBER OF FIT PARAMETERS
PARAMETER (MMAX=20)
DIMENSION X(NDATA),Y(NDATA),SIG(NDATA),A(MA),LISTA(MA),
COVAR (NCA ,NCA) ,ALPHA (NCA ,NCA) ,ATRY (MMAX) , BETA(MMAX ) , DA (MMAX )

IF(ALAMDA.LT.®) THEN
INITIALIZATON
KK=MFIT+1
DO 12 J=1,MA
DOES LISTA CONTAIN A PROPER PERMUTATION OF THE COEFFICIENTS ?
IHIT=0
DO 11 K=1 MFIT
IF(LISTA(K).EQ.J) IHIT=IHIT+1
CONTINUE
IF(IHIT.EQ.9) THEN
LISTA(KK)=J
KK=KK+1
ELSE IF(IHIT.GT.1) THEN
PAUSE 'IMPROPER PERMUTATION IN LISTA'
ENDIF
CONTINUE
IF(KK.NE. (MA+1)) PAUSE ' IMPROPER PERMUTATION IN LISTA'
ALAMDA=06.0081
CALL MRQCOF(X,Y,SIG,NDATA A MA,LISTA MFIT,ALPHA,BETA,NCA,
CHISQ)
OCHISQ=CHISQ
DO 13 J=1,MA
ATRY(J)=A(J)
CONTINUE
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14

15

16

17

18

ENDIF

AFTER LINEARIZED FITTING MATRIX,BY AUGMENTING DIAGNAL ELEMENTS.
DO 15 J=1, MFIT
DO 14 K=1,MFIT
COVAR (J K }=ALPHA(J.K)
CONTINUE
COVAR (J,J)=ALPHA(J,J)* (1. +ALAMDA)
DA(J)=BETA(J)
CONTINUE

MATRIX SOLUTION
CALL GAUSSJ(COYAR ,MFIT,NCA,DA.1,1)

IF(ALAMDA.EQ.9) THEN
ONCE CONYERGED EYALUATE COYARIANCE MATRIX WITH ALAMDA=0.
CALL COVSRT(COVAR ,NCA,MA,LISTA.MFIT)
RETURN )
ENDIF

DO 16 J=1 ,MFIT

DID THE TRIAL SUCCEED ?

ATRY (LISTA(J))=A(LISTA(J))+DA(J)
CONTINUE
CHISQ@=CHISQ

CALL MRQCOF (X,Y,SIG,NDATA,ATRY ,MA ,LISTA MFIT.COVAR,DA,NCA,
CHISQ)

IF (CHISQ.LT.OCHISQ) THEN
SUCCESSS, ACCEPT THE NEW SOLUTION.
ALAMDA=8. 1*ALAMDA
OCHISQ=CHISQ
DO 18 J=1 ,MFIT
DO 17 K=1,MFIT
ALPHA(J.K)=COVAR(J.K)
CONTINUE
BETA(J)=DA(J)
A(LISTA(J))=ATRY(LISTA(J))
CONTINUE
ELSE
FAILURE, INCREASE ALAMDA AND RETURN,
ALAMDA=198. *ALAMDA
CHISQ=0CHISQ
ENDIF
PRINT *,'ALAMDA=',ALAMDA
"PRINT *,'ERROR= ',CHISQ
RETURN
END

SUBROUTINE GAUSSJ(A,N,NP,B M, MP)
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o000 n

PARAMETER ( NMAX=50)
DIMENSION A(NP NP),B(NP,MP) , IPIV(NMAX),INDXR (NMAX),INDXC(NMAX)
THE INTEGER ARRAYS IPIV,INDXR AND INDXC ARE USED FOR BOOKKEEPING

ON THE PIVOTING. NMAX SHOULD BE AS LARGE AS THE LARGEST ANTICIPATED
VALUE OF N.

DO 11 J=1,N
IPIV(J)=0
11 CONTINUE
DO 22 I=1,N
THIS IS THE MAIN LOOP OVER THE COLUMNS TO BE REDUCED.
BIG=8
DO 13 J=1,N
IF (IPIV(J).NE.1) THEN
DO 12 K=1,N
IF(IPIV(K).EQ.8) THEN
IF (ABS(A(J.K)).GE.BIG) THEN
BIG=ABS (A(J,K))
IROW=J
ICOL=K
ENDIF
ELSE IF(IPIV(K).GT.1) THEN
PAUSE ‘SINGULAR MATRIX'
ENDIF
12 CONTINUE
ENDIF
13 CONTINUE
IPIV(ICOL)=IPIV(ICOL)+1

WE NOW HAVE THE PIVOT ELEMENT, SO WE INTERCHANGE ROWS, IF NEEDED,
TO PUT THE PIVOT ELEMENT ON THE DIAGNAL. THE COLUMNS ARE NOT
PHYSICALLY INTERCHAGED, ONLY RELABELED: INDX(I), THE COLUMN OF

THE ITH PIVOT ELEMENT, IS THE ITH COLUMN THAT IS REDUCED, WHILE
INDXR(I) IS THE ROW IN WHICH THAT PIVOT ELEMENT WAS ORIGINALLY
LOCATED. IF INDXR(I) IS NOT EQUAL TO INDXC(I) THERE IS AN IMPLIED
COLUMN INTERCHANGE. WITH THIS FORM OF BOOKKEEPING, THE SOLUTION B'S
WILL END UP IN THE CORRECT ORDER, AND THE INVERSE MATRIX WILL BE
SCRAMBLED BY COLUMNS.

IF (IROW.NE. ICOL) THEN
DO 14 L=1,N
DUM=A (IROW,L)
A(IROW,L)=A(ICOL,L)
A(ICOL,L)=DUM
14 CONTINUE
DO 15 L=1,M
DUM=B (IROW,L)
B(IROW,L)=B({ICOL,L)
B{ICOL,L)=DUM
15 CONTINUE
ENDIF
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17

18

19

21
22

0

23

24

o000

WE ARE NOW READY TO DIVIDE THE PIVOT ROW BY THE PIVOT ELEMENT,
LOCATED AT IROW AND ICOL.
INDXR (I)=IROW
INDXC(I)=ICOL
IF(A(ICOL,ICOL).EQ.9) PAUSE ‘SINGULAR MATRIX'
PIVINV=1./A(ICOL,ICOL)
A(ICOL,ICOL)=1.
DO 16 L=1,N
A(ICOL,L)=A(ICOL,L)*PIVINV
CONTINUE
DO 17 L=1.M
B(ICOL,L)=B(ICOL,L)*PIVINV
CONTINUGE

NEXT, WE REDUCE THE ROWS, EXCEPT FOR THE PIVOT ONE, OF COURSE.
DO 21 LL=1,N
IF(LL.NE.ICOL) THEN
DUM= A(LL,ICOL)
A(LL,ICOL)=9
DO 18 L=1,N
A(LL,L)=A(LL,L)-A(ICOL,L)*DUM
CONTINUE
DO 19 L=1,M
B(LL,L)=B(LL,L)-B(ICOL,L)*DUM
CONTINUE
ENDIF
CONTINUE
CONTINUE

IT REMAINS TO UNSCRAMBLE THE SOLUTION IN VIEW OF THE COLUMNS
INTERCHANGES. WE DO THIS BY INTERCHANGING PAIRS OF COLUMNS IN
THE REVERSE ORDER THAT THE PERMUTATION WAS BUILT UP.
DO 24 L=N,1,-1
IF (INDXR (L).NE. INDXC(L)) THEN
DO 23 K=1,N
DUM=A (K, INDXR (L))
A(K.INDXR(L))=A(K,INDXC(L))
A(K,INDXC(L))=DUM
CONTINUE
ENDIF
CONTINUE
RETURN
END

SUBROUTINE COVSRT(COVAR ,NCVM,MA ,LISTA MFIT)

GIVEN THE COVARIANCE MATRIX COVAR OF A FIT FOR MFIT OF MA TOTAL

PARAMETERS, AND THEIRORDERING LISTA(I), REPACK THE COVARIANCE MATRIX
TO THE TRUE ORDER OF THE PARAMETERS. ELEMENTS ASSOCIATED WITH FIXED

PARAMETERS WILL BE ZERO. NCVM IS THE PHYSICAL DIMENSION OF COVAR.
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DIMENSION COVAR(NCVM,NCVM) LISTA(MFIT)
DO 12 J=1,MA-1
DO 11 I=J+1,MA
COVAR(I,J)=0
CONTINUE
CONTINUE

REPACK OFF-DIAGNAL ELEMENTS OF FIT INTO CORRECT LOCATIONS BELOW
DIAGNAL
DO 14 I=1,MFIT-1
DO 13 J=I+1,MFIT
IF(LISTA(J).GT.LISTA(I)) THEN
COVAR (LISTA(J),LISTA(I))=COVAR(I,J)
ELSE
COVAR (LISTA(I),LISTA(J))=COVAR(I,J)
ENDIF
CONTINUE
CONTINUE

TEMPORARILLY STORE ORIGINAL DIAGONAL ELEMENTS IN TOP ROW, AND ZERO
THE DIAGONAL.
SWAP=COVAR (1,1)
DO 15 J=1,MA

COVAR(1,J)=COVAR(J,J)

COVAR(J.,J)=8.
CONTINUE
COVAR (LISTA(1),LISTA(L))=SWAP
SORT ELEMENTS INTO PROPER ORDER ON DIAGONAL.
DO 16 J=2 ,MFIT

COVAR (LISTA(J),LISTA(J))=COVAR(1,J)
CONTINUE
FILL IN ABOVE DIAGONAL BY SYMMETRY
DO 18 J=2,MA

DO 17 I=1,J-1

COVAR (I,J3)=COVAR(J,I)

CONTINUE
CONTINUE
RETORN
END

SUBROUTINE MRQCOF (X.Y,SIG,NDATA,A ,MA,LISTA,MFIT,ALPHA ,BETA, NALP,
CHISQ)

USED BY MRQMIN TO EVALUATE THE LINEARIZED FITTING MATRIX ALPHA,
AND YECTOR BETA.

PARAMETER (MMAX=20)

DIMENSION X(NDATA),Y(NDATA),SIG(NDATA) ,ALPHA(NALP ,NALP),
BETA(MA) ,DYDA(MMAX ) ,LISTA (MFIT),A(MA)
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DO 12 J=1,MFIT
DO 11 K=1,J
ALPHA(J,K)=0.
CONTINUE
BETA(J)=0.
CONTINUE
CHISQ=0.
DO 15 I=1,NDATA
CALL SINE(X(I),A,YMOD,DYDA,MA)
SIG2I=1./(SIG(I)*SIG(I))
DY=Y(I)-YMOD
DO 14 J=1,MFIT
WT=DYDA (LISTA(J))*SIG2T
DO 13 K=1,J
ALPHA(J ,K)=ALPHA(J,K)+WT*DYDA(LISTA(K))
CONTINUE
BETA (J )=BETA(J ) +DY*WT
CONTINUE
CHISQ=CHISQ+DY*DY*SIG2I
CONTINUE
DO 17 J=2,MFIT
DO 16 K=1,J-1
ALPHA(K,J)=ALPHA(J K)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE SINE(X,A,Y,DYDA,NA)

DIMENSION A(NA),DYDA(NA)

Y=0.

TPI=6.2831852

DO I=1,NA-1,3
Y=Y+A(I)*SIN(TPI*A(I+1)*X+A(I1+2))
DYDA({I)=SIN(TPI*A(I+1)*X+A(I+2))

DYDA(I+1)=A(I)*TPI*A(I+1)*COS(TPI*A(I+1}*X+A(I+2))

DYDA(I+2)=A(I)*COS(TPI*A(I+1)*X+A(I+2))
ENDDO
RETURN
END
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PROGRAM MEM

THIS PROGRAM IS USED TO ESTIMATE THE MAIN PERIODS HIDDEN

IN THE DENSITY VARIATION AT DIFFERENT ALTITUDES. GIVEN THE
LENGTH N OF THE INPUT DATA SEQUENCE AND THE NUMBERS OF

OF THE POLES M, THE PROGRAM PRODUCES THE ESTIMATED SPECTRUMS
AT THE SPECIFIED ALTITUDES.

INPUT:

DA4.DAT. THE FILE HAS 5 KM STEPS AND 9 LEVELS.

OUTPUT:

MA.DAT,... MI.DAT

DIMENSION DATA(50),WK1(58),WK2(58) ,WKM(58) ,COF (58)
CHARACTER CHAR1*1,FILE*3

PRINT *,'ENTER THE NUMBER OF SAMPLES——N: (FOR LIDAR DATA,
N=22,;FOR MAP-MF ,N=18;FOR MAP-MD,N= '

READ * N

PRINT *,"ENTER THE NUMBER OF POLES YOU WANT TO SPECIFY-—-M’
READ *,M

" PRINT*,'ENTER THE NUMBER OF LEVELS YOU SPECIFIED--LEVL. FOR

LIDAR DATA,LEVL=9; FOR MAP-WINE,LEVL=7.'
READ * ,LEVL
PRINT *,'ENTER THE NAME OF THE DATA FILE TO BE OPENED'
ACCEPT 5, FILE
FORMAT (A)
OPEN (UNIT=3,TYPE='OLD' ,NAME=FILE)
DO 1@e I=1,LEVL
DO J=1,N
READ(3,*) DATA(J)
DATA(J)=DATA(J)
ENDDO

CALL MEMCOF (DATA,N,M,PM,COF ,WK1 ,WK2 ,WKM)

I1=I+64
CHAR1=CHAR (I1)
OPEN(UNIT=4, TYPE='NEW' ,NAME='M'//CHAR1)
DO J=0,208
FDT=FLOAT(J)/400.
Y=EVLMEM(FDT ,COF ,M,PM)
WRITE(4,*) FDT,Y
ENDDO
CLOSE(4)
STOP
CONTINUE
CLOSE(3)
STOP
END

The function of the subroutine is as following:
Given a real vector of DATA of length N, and given M, this routine
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returnes avector COF of length M with COF(j)=aj, and a scalor PM=b8,

which are the coefficients for Maximum Entropy Method spetral

estimation. The user must provide workspace vectors WK1, WK2 and

WEM of length N, N and M, respectively.

SUBROUTINE MEMCOF (DATA,N,M,PM,COF ,WK1,WK2,WKM)
DIMENSION DATA(N),COF (M) ,WK1(N) ,WK2(N) WKM(M)
P=8.
DO J=1,N
P=P+DATA(J)*DATA(J)
ENDDO
PM=P/N
WK1(1)=DATA(1)
WK2 (N-1)=DATA(N)
DO J=2,N-1
WK1(J)=DATA(J)
WK2 (J-1)=DATA(J)
ENDDO
DO 17 K=1,M
PNEUM=9.
DENOM=8.
DO J=1,N-K
PNEUM=PNEUM+WK1 (J )*WK2(J)
DENOM=DENOM+WK1 (J)**2+WK2(J)**2
ENDDO
COF (K )=2.*PNEUM/DENOM
PM=PM* (1.—COF (K)**2)
IF(K.NE.1) THEN
DO I=1,K-1
COF (I )=WKM(I)-COF (K)*WKM(K-1I)
ENDDO
ENDIF

The algoriithm is recursive, building up the answer for larger
and larger values of M until the desired value is reached. At
this point in the algorithm, one could return the vector COF

and scalor for an MEM spectral estimate of K (rather than M)
terms.

IF (K.EQ.M) RETURN
DO I=1,K
WKM(I)=COF (I)
ENDDO
DO J=1,N-K-1
WK1(J)=WK1(J)-WKM(K)*WK2(J)
WK2 (J)=WK2(J+1)-WKM(K)*WK1(J+1)
ENDDO
CONTINUE
PAUSE' NEVER GET THERE'
END
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The following FUNCTION returns the power spectrum estimates P(f)

as a function of FDT=f*delta.

FUNCTION EVLMEM(FDT,bCOF ,M,PM)
DIMENSION COF (M)
REAL*8 WR ,WI,WPR,WPI, WTEMP,THETA
THETA=6.28318530717959D8*FDT
WPR=DCOS (THETA)
WPI=DSIN(THETA)
WR=1.D8
WI=0.D@
SUMR=1.
SUMI=0.
DO 11 I=1,M
WTEMP=WR
WR=WR*WPR-WI*WPI
WI=WI*WPR+WTEMP*WPI
SUMR=SUMR-COF (I)*SNGL (WR)
SUMI=SUMI-COF (I)*SNGL(WI)
ENDDO
EVLMEM=PM/ ( SUMR**2+SUMI**2)
RETURN
END
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PROGRAM PICKS

THIS PROGRAM IS USED TO LIFT THE DENSITY RATIO FROM THE

THE ORIGINAL DATA FILES WITH THE RESOLUTION OF 1KM AND

THEN DO THE INTERPOLATIONS.

INPUT:

SAME AS THOSE IN ‘'PICK.FOR'.

OUTPUT:

1. DAS.DAT. DATA FILE CONTAINS THE DENSITIES AT DIFFERENT
ALTITUDES (1 KM RESOLUTION) WITH AVERAGES BEING SUBTRACTED.

2. AVER.DAT. THE FILE THAT CONTAINS THE AVERAGE DENSITIES AT
DIFFERENT ALTTIUDES.

REAL DEN(5@,30) ,ALT(258) ,RDEN(258) ,FDEN(250) ,RATIO(258),
SGMA(250) ,TEMP (250) ,SNR(250) ,Y(50,30) ,AVER(50)

INTEGER NUM(250),NF(250)

CHARACTER FILE*15,PRE(9)*80, CI*1,CHAR1*1

READ THE DENSITY RATIOS AT THE ALTITUDES FROM 25 THROUGH 65SKM.

N1=19
DO 200 I=65,65+N1i-1

L=I-64

CI=CHAR (1)

FILE='gf’//CI//' .DEN'

PRINT *,FILE
OPEN(UNIT=3,TYPE='OLD' ,NAME=FILE)
READ THE TOP OF THE DATA FILES

DO J=1,9

READ(3,10) PRE(J)
FORMAT(A)

ENDDO
K=1

LA=25

DO J=1,179

READ(3,*) NUM(J),ALT(J),RDEN(J),FDEN(J),RATIO(J),
SGMA(J), NF(J),TEMP(J),SNR(J)
ENDDO
DO 1006 J=1,200
IF (INT(ALT(J)+0.2).EQ.LA) THEN
DEN(K,L)=RATIO(J)
LA=LA+1
PRINT *, ALT(J).K,L,DEN(K.L)
K=K+1
ENDIF
IF(LA.GT.65) GOTO 200
CONTINUE
CONTINUE
CLOSE (3)
PRINT*,'THE LEVELS K=' K

N=N1
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LEVL=K

DO I=1,LEVL

K=0
DO J=1,N
IF(J.EQ.5) THEN
Y(I,J+K)=DEN(I,J)
K=K+1
Y(I,J+K)=(DEN(I,J)+DEN(I,J+1))/2.
ELSE IF(J.EQ.12) THEN
Y(I,J+K)=DEN(I,J)
K=K+1
Y(I,J+K)=2*(DEN(I,J)-DEN(I,J-1))+DEN(I,J-1)
K=K+1
Y(I,J+K)=-2* (DEN(I,J+3)-DEN(I,J+4))+DEN(I, J+3)
ELSE
Y(I,J+K)=DEN(I,J)
ENDIF
ENDDO
ENDDO
N=N+K

PRINT *,'NEW N=' N

OPEN(UNIT=6,TYPE='NEW' ,NAME='AVER" )
OPEN(UNIT=4,TYPE='NEW' ,NAME='DA5")
DO I=1,LEVL
SUM=0.
DO K=1,N9
SOM=SUM+Y(I,K)
ENDDO
AVER (I)=SUM/N
WRITE(6,*) AVER(I)
PRINT *,'AVER=',AVER(I)
DO K=1,N
WRITE(4,*) Y(I,K)-AVER(I)
ENDDO
ENDDO
CLOSE (4)
CLOSE(6)
PRINT*,'DO YOU WANT TO CREATE DATA FILES TO DRAW THE DENSITY
1 PROFILES AT DIFFERENT ALTITUDES ? ENTER Y OR N.°
ACCEPT 300, CHAR1
300 FORMAT (A1)
IF (CHAR1.EQ.'Y'.OR.CHAR1.EQ.'y') THEN
OPEN(UNIT=4,TYPE='NEW' ,NAME='LEVL")
DO I=1,LEVL
DO L=1,N
WRITE(6,*) Y(I,L)-AVER(I)
ENDDO
ENDDO
CLOSE (4)
ENDIF
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STOP
END
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PROGRAM GSP

THIS PROGRAM IS USED TO GENERATE GRAVITY WAVE SIGNALS BY
FILTERING OUT THE LOW FREQUENCY COMPONENTS FROM THE DAILY
DENSITY PROFILES. THE DAILY DENSITY PROFILES ARE SIMULATED
BY LSE MODELS.
USE 'LINK GSP,@SYS:IMSL® TO CONNECT °'RCURY’ TO THIS PROGRAM.
INPUT: .
ORIGINAL S-MINUTE PROFILES.
OUTPUT:
GSP.DAT. FILE CONTAINS THE DENSITY VARIATIONS CAUSED BY
GRAVITY WAVES.
LSE.DAT. FILE CONTAINS THE RESULT OF LSE SIMULATION OF
THE DAILY DENSITY PROFILES.
RATIO.DAT. FILE CONTAINS THE MEASURED DAILY DENSITY PROFILE.

REAL ALT(1000),RDEN(1000),FDEN(1080) RATIO(1000),2(1000),
SGMA(1000) ,TEMP(1000) ,SNR(0:1000) ,DEN(1000) ,DENM(1000)

INTEGER NUM(1000) ,NF(1000)

REAL B(10),SSPOLY(1@),STAT(10)

REAL RWKSP(71080)

CHARACTER FILE*15,PRE(9)*80, CI*1

EXTERNAL RCURV

COMMON /WORKSP/ RWKSP

READ THE DENSITY PROFILES.
PRINT*,'ENTER NAME OF DATA FILE TO BE PROCESSED,e.g.,1865'
ACCEPT 10,FILE
PRINT *,°G602'//FILE//' .den’
OPEN(UNIT=3,TYPE="OLD' ,NAME='G602' //FILE//'.den")
READ THE TOP OF THE DATA FILES
DO J=1,9
READ(3,10) PRE(J)
FORMAT (A)
ENDDO
J=0
SNR(J)=1000
DO WHILE(SNR(J).NE.-999.0)
J=J+1
READ(3,*) NOM(J),ALT(J),RDEN(J),FDEN(J) ,RATIO(J).
SGMA(J), NF(J),TEMP(J),SNR(J)
ENDDO
N=J
CLOSE(3)
DO I=1,N
Z(I)=ALT(I)/100.
ENDDO
DO J=1,10
B(J)=0.
ENDDO
PRINT*,'ENTER THE DEGREE OF POLYN. NP='
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READ*, NP
CALL RCURV(N,Z,RATIO,NP,B,SSPOLY,STAT)
DO I=1i,N
CALL FNT(I,Z(I),B,DENM(I))
DEN(I)=RATIO(I)-DENM(I)
ENDDO
PRINT* ,'ENTER THE RANGE OF THE ALTITUDE M: M=3@ IF 25-45 KM’
PRINT*,'M=63 IF 35-55 KM, M=96 IF 45-65KM’
READ*, M
ML=64
OPEN(4,TYPE='NEW' ,NAME='GSP" )
DO I=1,ML
WRITE(4,*)DEN(I+M)
ENDDO
CLOSE (4)
OPEN(4,TYPE='NEW' ,NAME='LSE" )
DO I=i ML
WRITE(4,*) DENM(I+M),ALT(I+M)
ENDDO
CLOSE (4)
OPEN (4 ,TYPE='NEW' ,NAME="RATIO" )
DO I=1,N
WRITE(4,*) RATIO(I),ALT(I)
ENDDO
CLOSE (4)
STOP
END

DEFINE A POLYNOMIAL WHICH WILL SIMULATE THE DENSITY CURVE.

SUBROUTINE FNT(I,X,B,DENM)

REAL B(10)

DENM=B(1)

DO J=2,10
DENM=DENM+B(J )*X** (J-1)

ENDDO

RETURN

END
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PROGRAM PDM

THIS PROGRAM IS USED TO ESTIMATE THE SPECTRUMS OF PLANETARY
WAVES AT DIFFERENT ALTITUDES OR THE SPECTRUMS OF GRAVITY WAVES
INPUT:
DA6.DAT. (FILE CONTAINS THE DENSITY SIGNALS WITH LENGTH 44.)
OR GSP.DAT. (FILE CONTAINS THE DIFFERENCE BETWEEN THE MEASURED
DENSITES AND THE LSE MODELED ONES.N=64)
OUTPUT:
PPDM.DAT. FILE CONTAINS THE SPECTRUMS OF PLANETARY WAVES.
PDM. DAT FILE CONTAINS THE SPECTRUMS OF GRAVITY WAVES.

REAL*8 A(2048) ,R(2048),b(2048),PI,AMP,F
DODBLE COMPLEX X(2048)
CHARACTER*10 FILE,Al

PRINT *,'ENTER THE NUMBER OF SAMPLES—-N. IF THE INPUT IS DA6.DAT,
1 N=44; IF THE INPUT IS GSP.DAT,N=64.°
READ *, N

PRINT*,'ENTER NAME OF DATA FILE TO BE OPENED: GSP OR DA6'
ACCEPT 18,FILE
FORMAT (A)
IF(FILE.EQ. 'DA6'.OR.FILE.EQ. 'da6') THEN
LEVL=9
ELSE
LEVL=1
ENDIF
PRINT *,'ENTER THE SAMPLING INTERVAL.FOR DA6.DAT,DELTA=.S; FOR
1 GSP.DAT,DELTA=.3.'
READ *, DELTA

OPEN(UNIT=11 NAME=FILE,STATUS='OLD")
DO 1988 J=1,LEVL
DO L=1,2048
R(L)=0.
ENDDO
READ(11.*) (A(I),I=1.N)
FIND THE ESTIMATION OF THE AUTOCORRELATIONS.
DO K=1,N
R (K)=0.
DO I=1, N-K+1
R(K)=R(K)+A(I+K-1)*A(I)
ENDDO
R(K)=R(K)/FLOAT(N)
ENDDO

CHECK IF N=2**K
I-1

Ne=N-2**1

DO WHILE (N@.GT.Q)

55



I=I+1
N@=N-2**T
ENDDO
N1=2**]
PRINT*,'Ni=' N1
CALL FFTRC{(R.,N1,X IWK,WK)
OPEN(UNIT=4,STATUS='NEW' ,NAME="PDM" )
DO K=1,N1/2 :
FR=FLOAT (K-1)/(N1*DELTA)
AMP=CDABS (X (K) )
WRITE(4.*) FR,AMP
ENDDO
CLOSE(4)
100 CONTINUE
CLOSE(11)
STOP
END
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